

Additive Manufacturing Task Group

- FSTG-like approach to Additive Manufacturing
- Identify key variables affecting fire safety requirements
- Simplify methodology of compliance demonstration to account for these key variables
- Final goal may be approved guidance material like the PS

Part design

- "Replica" of conventional part
- Bio-inspired (bone-like) complex structures

Post processing

- For the specimen: e.g. removal of support, or for the part: e.g. grinding/sanding to certain surface quality
- Spatula, fillers, topcoats

Build

- Printing directions
- Raster angle
- Layer thickness
- Thickness
- Infill (%)
- Single specimens vs. cut from bigger plate

Manufacturing technology

- Fused Filament, laser sintering, powder bed etc.
- Printer manufacturer and type
- Layer thickness
- Print speed and temperature

Material

- Material itself is a variable
- ALM type vs. standard type of same material
- Filament thickness

Parameters

- Material
- Printing technique
- Filament thickness
- Printing directions
- Raster angle
- Layer thickness
- Thickness
- Infill (%)
- Single specimens vs.
 cut from bigger plate

Parameters

- 1. A
- 2. B
- 3. C
- 4. ...

To do

- Agree on materials that show just enough susceptibility to factors of interest (starting with printing direction)
- Move to more exotic printing angles
- Move to other factors: infill, raster angle...
- Investigate the possibility to use data from other production methods by showing similarity with specific 3D printing material
- → Original vs. 3rd-party cartridge vs. flat sheet
- \rightarrow MCC

Thank you